
      EASYNET 1.2
Copyright © 1994 by Patrick Lassalle.         ALL RIGHTS RESERVED

EasyNet is a Custom Control for Microsoft Visual Basic for Windows (*). It
helps you quickly draw and manage network diagrams.

Quick Start
Overview
Why use EasyNet?

Properties
Events

Installation
Registration
Order Form
License

(*) Microsoft is a registered trademark. Windows and Visual Basic are trademarks of Microsoft Corporation.

Quick Start
- Add the EasyNet VBX to your project by selecting "Add File..." from
Visual Basic's "File" menu. If this is the demonstration version, an "About"
dialog box appears and you have to click Ok.
- Drag an EasyNet control from the toolbox to your form.
- Launch the program by selecting "Start" from the "Run" menu (or do F5).
- Draw a node: bring the mouse cursor into the EasyNet control, press the
left button, move the mouse and release the left button. You have created
an elliptic node. This node is selected: that's why 9 handles (little squares)
are displayed. The handle at the center of the node is used to draw a link.
The 8 others allow to resize the node. If you want to move the node you
bring the mouse cursor into the node, press the left button, move the
mouse and release the left button.
- Draw a second node...(same method)
- Draw a link: bring the mouse cursor into the handle at the center of the
selected node, press the left button, move the mouse towards the other
node. When the mouse cursor is into the other node, release the left button.
The link has been created. And it is selected since a handle is displayed at
the center of this link.
- You may stretch this link: bring the mouse cursor into the link handle,
press the left button, move the mouse and release the left button. You have
created a new link segment. It has 3 handles allowing you to add or remove
segments. (The handle at the intersection of two segments allows you to
remove a segment :    you move it with the mouse so that the two segments
are aligned and when these two segments are approximately aligned,
release the left button).
- Now, you may return to the Visual Basic design-time mode in order
to change EasyNet control properties. For instance you may change the
node filling color with FillColor property, the node shape (Shape property),
the drawing color (DrawColor property). You may allow multiselection
(MultiSel and SelectMode properties), add scrollbars (ScrollBars property),
etc...
...Well, it is very easy, isnt'it?

Enjoy!

Why use EasyNet?
EasyNet control is useful in following applications:

-    workflow diagrams
-    data base diagrams
-    organizational flowcharts
-    communication networks
-    state transitions diagrams
-    ... and all application that needs to manage a network diagram.

Overview
This Custom Control allows to draw network diagrams. A network diagram is

a set of nodes that can be linked. So an EasyNet control contains items that
can be nodes or links. You can associate data to each item and you can
navigate in the network diagram.
 Drawings can be made interactively with the mouse or programmaticaly.   

See Quick Start to see how to interactively draw nodes, resize nodes, move
nodes, stretch links, select one item or multiselect items.
By exploring following topics, you'll discover all features of the EasyNet

control.
Items
Drawing
Data Association
Navigation
Capabilities
Limits

Items
Items are nodes or links. Two nodes can be linked with a link. A link cannot

exist without its origin and destination nodes. If one of these two nodes is
deleted, the link is also deleted.
You can make an item be the current one either with the mouse or with Item

property, allowing you to work with it, get or set its properties. You can also
select several items with the mouse if multiselection is allowed (in such a
case MultiSel and SelectMode properties are true).
IsLink property allows to know if current item is a link or not.
Sleeping property allows to specify if an item is active or not. If it sleeps, the

user cannot interactively make it current or selected.

Example:If current item is a link, make its origin node be red.

Dim curLink As Long

If Net1.IsLink = True Then
 ' Save current item
 curLink = Net1.Item

 ' Make origin node be the current item
 ' in order to work with it
 Net1.Item = Net1.Org

 ' Change node filling color
 Net1.FillColor = RGB(255, 0, 0)

 ' Restore current item
 Net1.Item = curLink
End If

Drawing
 You can change colors, styles and shapes of each item:

-    X1, X2, Y1, Y2 properties allows to set or get position and size of
each item.
-    Picture property allows to associate a bitmap or an icon to each
node.
-    Shape property allows to specify a shape for a node (ellipse or
rectangle)
-    DrawColor, DrawStyle and DrawWidth properties allow to specify the
color and width of the pen used to draw nodes or links.
-    FillColor property allows to specify the color used inside a node.
-    PointCount, PointX, PointY    properties allow to have a link composed
of several segments.
-    Oriented property specifies if a link is oriented or not. If the link is
oriented, it has an arrowhead.
-    Transparent property specifies if a node is transparent or not.

You can create items, delete items and do other edit actions (like copying
the network diagram onto the clipboard in a metafile format) with EditAction
property.

Example:
Creates 3 nodes and 2 links. Each node has a text. Two are rectangles and

the other is an ellipse. The links are oriented.

Sub Exercice ()
 Dim n1, n2, n3 As Long

 ' Cause current item to be null
 ' Therefore, following property settings apply
 ' to next created items.
 Net1.Item = 0
 Net1.Shape = 1 'Default shape = Rectangle.
 Net1.FillColor = RGB(255, 255, 192) 'Default Fill color
 Net1.DrawColor = RGB(0, 0, 128) 'Default Draw color
 Net1.Oriented = True 'Oriented links

 ' Create first node. It has a rectangular shape.
 Net1.EditAction = 0
 Net1.X1 = 100
 Net1.Y1 = 100
 Net1.X2 = 2000
 Net1.Y2 = 500
 Net1.Text = "A network to implement ?"
 n1 = Net1.Item

 ' Create second node. It has a rectangular shape.
 Net1.EditAction = 0
 Net1.X1 = 2200
 Net1.Y1 = 300
 Net1.X2 = 3600

 Net1.Y2 = 700
 Net1.Text = "FlowChart needs ?"
 n2 = Net1.Item

 ' Create a third node. No shape is indicated.
 ' Therefore its shape is the default one: ellipse.
 Net1.EditAction = 0
 Net1.Shape = 0 ' Ellipse
 Net1.X1 = 1100
 Net1.Y1 = 1500
 Net1.X2 = 3000
 Net1.Y2 = 2000
 Net1.Text = "Use EasyNet.vbx !!"
 n3 = Net1.Item

 ' Create first link
 Net1.Org = n1
 Net1.Dst = n3
 Net1.EditAction = 1

 ' Create second link with an extra point (2 segments)
 Net1.Org = n2
 Net1.Dst = n3
 Net1.EditAction = 1
 Net1.PointCount = 1
 Net1.PointX(0) = 3200
 Net1.PointY(0) = 1000

 ' Unselect last created link
 Net1.Item = 0
End Sub

Data Association
You can associate data to each item (node or link) with following properties:

-    Text property associates a string. The EasyNet control maintains the
memory for the strings associated to items.
-    Data property associates a long integer that can be used to store a
reference to a user data.
-    Type property associates an integer that can be used to store an
identifier or a type.
-    Picture property associates a picture (bitmap or icon). The EasyNet
control does not maintain the memory for that picture.

Navigation
You can navigate in the network diagram with the three following properties:

-    LoopAction property has to be called first in order to indicate the
type of navigation to perform.
-    Then, a call to    LoopCount gives the count of items involved in this

navigation.
-    Then, you get each item with LoopItem property.

You can retrieve origin and destination node of a link with Org and Dst
properties.
Oriented property specifies if a link is oriented or not.

Example:
Makes color of all "out" links of all selected nodes be red.
Two calls to LoopAction property cannnot be cascaded so you have first to

memorize the selected nodes in an array in order to work with them.

Sub Exercice ()
 Dim nbnode, nblink, i, j As Integer
 Dim Node() As Long

 ' Do a loop with selected nodes
 Net1.LoopAction = 2

 ' Get count of selected nodes
 nbnode = Net1.LoopCount

 ' If no selected nodes, nothing to do
 If nbnode = 0 Then Exit Sub

 ' Memorize selected nodes in a dynamic array.
 ReDim Node(1 To nbnode)
 For i = 1 To nbnode
 Node(i) = Net1.LoopItem(i - 1)
 Next i

 ' For each node of our array...
 For i = 1 To nbnode
 ' ... makes it be the current item
 Net1.Item = Node(i)

 ' Do a loop with all links of the current node
 Net1.LoopAction = 3

 ' Get count of selected nodes
 nblink = Net1.LoopCount

 ' For each link of the current node...
 For j = 1 To nblink
 Net1.Item = Net1.LoopItem(j - 1)
 '... if this link is an "out" link changes its color
 If Net1.Org = Node(i) And Net1.Oriented = True Then
 Net1.DrawColor = RGB(255, 0, 0)
 End If

 Next j
 Next i

 ' Don't forget to delete the array
 Erase Node
End Sub

Capabilities
Following properties allow to set capabilities for an EasyNet control:

CanDrawNode
CanDrawLink
CanMoveNode
CanSizeNode
CanStretchLink
CanMultiLink
MultiSel
ReadOnly
ScrollBars
xGrid
yGrid

Limits
For one EasyNet control:

-    the maximum number of nodes is 120.
-    the maximum number of links is 120.
-    the maximum length of an item text is 50 characters.
-    the maximum number of link points is 8. (therefore, the maximum
number of link segments is 9).

Of course, one application can manage simultaneously several EasyNet
controls (for instance, in MDI child windows).

Properties
All the properties are listed below. Properties that apply only to the EasyNet Custom

Control, or require special consideration when used with it, are underlined. They are
documented in this help file. See the Visual Basic Language Reference or online Help for
documentation of the remaining properties.

CanDrawNode CanDrawLink CanMoveNode CanSizeNode
CanStretchLink CanMultiLink CtlName BackColor
BorderStyle Caption Data Dst
DragIcon DragMode DrawColor DrawStyle
DrawWidth EditAction Enabled FillColor
FontBold FontItalic FontName FontSize
FontStrike FontUnder Height HelpContextId
Hwnd Index IsLink Item
Left LoopAction LoopCount LoopItem
MousePointer MultiSel Oriented Org
Parent Picture PointCount PointX
PointY PointedArea ReadOnly ScrollBars
SelectMode Shape Sleeping TabIndex
TabStop Tag Text Top
Transparent Type Visible Width
X1 X2 xGrid xScroll
Y1 Y2 yGrid yScroll

Events
All the events are listed below. Events that apply only to the EasyNet Custom Control, or

require special consideration when used with it, are underlined. They are documented in this
help file.    See the Visual Basic Language Reference or online Help for documentation of the
remaining events.

AddLink AddNode Change Click
DblClick DragDrop DragOver ErrSpace
GotFocus KeyDown KeyPress KeyUp
LostFocus MouseDown MouseMove MouseUp
SelChange StartLink StartMove StartResize
StartStretch

FillColor Property
Description
If current item is 0, sets or returns the "current" filling node color (the filling

color used for next created nodes).
If current item is a node, sets or returns its color (the color with which the

node is filled).
If current item is a link, writing has no effect and reading returns 0.
This property has no effect if Transparent property is set.
Usage
[form.]NET.FillColor[= color &]
Settings
The FillColor property settings are:
Setting Description
Normal RGB Colors Color set with RGB or QBColor function in code
System Default Colors Colors specified with the system color constants

from
CONSTANT.TXT, a Visual Basic file that you can load
into a project's global module.    Window's
substitutes the user's choices, as specified through
the user's Control Panel Settings.

By default, FillColor is set to 0 (black)
Data Type

Long
See Also
Drawing

DrawColor Property
Description
If current item is 0, sets or returns the "current" drawing color    (the drawing

color used for next created items).
If current item is not 0, sets or returns its drawing color.
Usage
[form.]NET.DrawColor[= color &]
Settings
The DrawColor property settings are:
Setting Description
Normal RGB Colors Color set with RGB or QBColor function in code
System Default Colors Colors specified with the system color constants

from
CONSTANT.TXT, a Visual Basic file that you can load
into a project's global module.    Window's
substitutes the user's choices, as specified through
the user's Control Panel Settings.

By default, DrawColor is set to 0 (black)
Data Type
Long
See Also
Drawing

DrawStyle Property
Description
If current item is 0, sets or returns the "current" drawing style    (the drawing

style used for next created items).
If current item is not 0, sets or returns the item drawing style.
Usage
[form.]NET.DrawStyle[= size]
Setting

The DrawStyle property settings are:
Setting Description

0 (Default) Solid
1 Dash
2 Dot
3 Dash-Dot
4 Dash-Dot-Dot
5 Transparent
6 Inside Solid

Data Type
Integer (enumerated)
Remarks
If DrawWidth is set to a value greater than 1, then DrawStyles 1 through 4

produce a solid line (the DrawStyle property value is not changed).    If
DrawWidth is set to 1, DrawStyle produces the effect described above for
each setting.
See Also
Drawing

DrawWidth Property
Description
If current item is 0, sets or returns the "current" drawing pen width    (the

drawing pen width used for next created items).
If current item is not 0, sets or returns the item drawing pen width.
Usage
[form.]NET.DrawWidth[= size]
Setting
You can set DrawWidth to a value of 1 to 8 (pixels).
Data Type
Integer
See Also
Drawing

Shape Property
Description
If current item is 0, sets or returns the "current" node shape    (the shape

used for next created nodes).
If current item is a node, sets or returns its shape (ellipse, rectangle).
If current item is a link, writing has no effect and reading returns 0.
Usage
[form.]NET.Shape[= shape]
Settings
The Shape property settings are:
Setting Description
0 Ellipse
1 Rectangle
By default, Shape is set to 0 (ellipse)
Data Type
Integer
See Also
Drawing

Transparent Property
Description
If current item is 0, specify if next created nodes will be transparent or not.
If current item is a node, specify if it is transparent or not.
If current item is a link, writing has no effect and reading returns 0.
Usage
[form.]NET.Transparent[=    {True | False}]
Settings
The Transparent property settings are:
Setting Description
False Transparent
True (default) Opaque
Data Type
Integer (Boolean)
See also
Drawing

Oriented Property
Description
If current item is 0, specify if next created links will be oriented or not.
If current item is a link, specify if it is oriented or not.
If current item is a node, writing has no effect and reading returns 0.
When a link is oriented, it is displayed with an arrowhead at its destination

node.
Usage
[form.]NET.Oriented[=    {True | False}]
Settings
The Oriented property settings are:
Setting Description
False no arrowhead
True (default) one arrowhead
Data Type
Integer (Boolean)
See also
Navigation

X1, Y1,    X2,    Y2 Property
Description
If current item is 0, sets or returns the coordinates of upper left point (X1,

Y1) or lower right point (X2, Y2) of the bounding rectangle of next created
node.
If current item is a node, sets or returns the coordinates of upper left point

(X1, Y1) or lower right point (X2, Y2) of its bounding rectangle.
If current item is a link, writing those properties has no effect and reading

returns the coordinates of upper left point (X1, Y1) or lower right point (X2,
Y2) of its bounding rectangle.
Not available at design time.
Usage
[form.]NET.X1[= numeric expression]
[form.]NET.Y1[= numeric expression]
[form.]NET.X2[= numeric expression]
[form.]NET.Y2[= numeric expression]
Data Type
Long
See Also
Drawing

xGrid, yGrid Property
Description
Sets or returns the grid values in twips.
Usage
[form.]NET.xGrid[= numeric expression]
[form.]NET.yGrid[= numeric expression]
Data Type
Long
See Also
Capabilities

Org Property
Description
Sets the origin node of next created links (The value of the current item has

no effect when writing this property).
If current item is 0, or if it is not a link, returns the origin node of next

created links.
If current item is a link, returns its origin node.
Not available at design time.
Usage
[form.]NET.Org[= idNode]
Data Type
Long
Remarks
It is not possible to change directly the origin node of a link. If you want to

do that, you have to memorize the link properties, destroy it, create a new
one with the new origin node and sets previous saved properties.
See Also
Navigation

Dst Property
Description
Sets the destination node of next created links (The value of the current

item has no effect when writing this property).
If current item is 0, or if it is not a link, returns the destination node of next

created links.
If current item is a link, returns its destination node.
Not available at design time.
Usage
[form.]NET.Dst[= idNode]
Data Type
Long
Remarks
It is not possible to change directly the destination node of a link. If you

want to do that, you have to memorize the link properties, destroy it, create
a new one with the new destination node and sets previous saved properties.
See Also
Navigation

Item Property
Description
Sets or returns the current item (node or link). The current item is the

selected one. Making an item be the current one allows to work with it
(setting or getting its properties: position ,size, text, colors, etc).
Setting this property causes previous selection to disappear.
Not available at design time.
Usage
[form.]NET.Item[= item]
Data Type
Long
See Also
Items

IsLink Property
Description
Indicates if the current item is a link.
Not available at design time; read only at run time.
Usage
[form.]NET.IsLink
Settings
The IsLink property settings are:
Setting Description
False current item is 0 or it is a node
True current item is not 0 and it is a link
Data Type
Integer (Boolean)
See Also
Items

Sleeping Property
Description
If current item is 0, specify if next created items will be in "sleeping mode"

or not.
If current item is not 0, specify if it is in "sleeping mode" or not.
Not available at design time
When an item is in "sleeping mode", it is inactive and the user cannot

interactively make it current or selected. He can do this only
programmaticaly. Such an item can be used to display a bitmap or a text but
the user cannot move, stretch or resize it with the mouse.
Usage
[form.]NET.Sleeping [=    {True | False}]
Settings
The Sleeping property settings are:
Setting Description
False (default) The item is active.
True The item is sleeping.
Data Type
Integer (Boolean)
See also
Items

LoopAction Property
Description
Specifies the type of item navigation to perform.
Not available at design time; write only at run time.
Usage
[form.]NET.LoopAction = setting
Settings
The LoopAction property settings are:
Setting Description
0 all nodes
1 all links
2 all selected nodes
3 all links of a node
Data Type
Integer (enumerated)
Remarks
1. This property is to be used in conjonction with LoopCount and LoopItem

properties:
- LoopAction specifies the type of loop to do: for instance a loop among

all current node links (LoopAction = 3).
- After a call to LoopAction, LoopCount indicates the number of items

involved in this loop.
- Finally, LoopItem allows to read each item and to perform any work

with it.
2. Two calls to LoopAction property cannnot be cascaded.
See Also
Navigation

LoopCount Property
Description
Specifies the count of items involved in a navigation action performed by a

call to LoopAction    property.
Not available at design time; read only at run time.
Usage
[form.]NET.LoopCount
Data Type
Integer   
Remarks
This property has to be called just after a call to LoopAction    property.
See Also
Navigation

LoopItem Property
Description
Returns an item selected in a navigation action performed by a call to

LoopAction property.
Not available at design time; read only at run time.
Usage
[form.]NET.LoopItem(index)
Data Type
Long
See Also
Navigation

PointCount Property
Description
If current item is 0 or is a node, writing this property has no effect and

reading it returns 0.
If current item is a link, sets or returns the number of its points.
Not available at design time.
Usage
[form.]NET.PointCount[= numeric expression]
Data Type
Integer   
Remarks
A link point is a point that joins two segments of a link. If a link has n points,

it is composed of n+1 segments. The maximum value for the number of link
points is 8.
See Also
Drawing

PointX Property
Description
If current item is 0 or is a node, writing this property has no effect and

reading it returns 0.
If current item is a link, sets or returns a long integer value that identifies an

x position of a specified link point.
Not available at design time.
Usage
[form.]NET.PointX(index)[= numeric expression]
Data Type
Long
Remarks
If current item is a link reading this property has special meanings if index

has a negative value between -1 and -4:
* -1: returns x position of intersection point between origin node border

and link.
* -2: returns x position of intersection point between destination node

border and link
* -3: if link is oriented, returns x position of one arrowhead point. If link

is not oriented, it has the same effect    as the case -2.
* -4: if link is oriented, returns x position of the other arrowhead point.

If link is not oriented, it has the same effect    as the case -2.
See Also

Drawing
Example Print an arrow
Dim i, nbpoint As Integer
Dim l, ptx1, pty1, ptx2, pty2, ptx3, pty3 As Long
Dim ptx(), pty() As Long

'Number of extra points
nbpoint = Net1.PointCount

'Allocate an array of nbpoint + 2
ReDim ptx(0 To nbpoint + 1)
ReDim pty(0 To nbpoint + 1)

'First point (intersection between origin node border and link)
ptx(0) = Net1.PointX(-1)
pty(0) = Net1.PointY(-1)

' Normal extra points
For l = 1 To nbpoint
 ptx(l) = Net1.PointX(l - 1)
 pty(l) = Net1.PointY(l - 1)
Next l

'Last point (intersection between destination node border and link)

ptx(nbpoint + 1) = Net1.PointX(-2)
pty(nbpoint + 1) = Net1.PointY(-2)

' Draw all link segments
For l = 0 To nbpoint
 printer.Line (ptx(l), pty(l))-(ptx(l+1), pty(l+1)), Net1.DrawColor
Next l

'Get point arrow head
ptx1 = Net1.PointX(-3)
pty1 = Net1.PointY(-3)
ptx2 = Net1.PointX(-4)
pty2 = Net1.PointY(-4)
ptx3 = ptx(nbpoint + 1)
pty3 = pty(nbpoint + 1)

'Draw arrow head
printer.Line (ptx1, pty1)-(ptx2, pty2), Net1.DrawColor
printer.Line (ptx1, pty1)-(ptx3, pty3), Net1.DrawColor
printer.Line (ptx3, pty3)-(ptx2, pty2), Net1.DrawColor

PointY Property
Description
If current item is 0 or is a node, writing this property has no effect and

reading it returns 0.
If current item is a link, sets or returns a long integer value that identifies an

y position of a specified link point.
Not available at design time.
Usage
[form.]NET.PointY(index)[= numeric expression]
Data Type
Long
Remarks
If current item is a link, reading this property has special meanings if index

has a negative value between -1 and -4:
* -1: returns y position of intersection point between origin node border

and link.
* -2: returns y position of intersection point between destination node

border and link
* -3:.if link is oriented, returns y position of one arrowhead point. If link

is not oriented, it has the same effect    as the case -2.
* -4: if link is oriented, returns y position of the other arrowhead point.

If link is not oriented, it has the same effect    as the case -2.
See Also

Drawing
Example Print an arrow
Dim i, nbpoint As Integer
Dim l, ptx1, pty1, ptx2, pty2, ptx3, pty3 As Long
Dim ptx(), pty() As Long

'Number of extra points
nbpoint = Net1.PointCount

'Allocate an array of nbpoint + 2
ReDim ptx(0 To nbpoint + 1)
ReDim pty(0 To nbpoint + 1)

'First point (intersection between origin node border and link)
ptx(0) = Net1.PointX(-1)
pty(0) = Net1.PointY(-1)

' Normal extra points
For l = 1 To nbpoint
 ptx(l) = Net1.PointX(l - 1)
 pty(l) = Net1.PointY(l - 1)
Next l

'Last point (intersection between destination node border and link)

ptx(nbpoint + 1) = Net1.PointX(-2)
pty(nbpoint + 1) = Net1.PointY(-2)

' Draw all link segments
For l = 0 To nbpoint
 printer.Line (ptx(l), pty(l))-(ptx(l+1), pty(l+1)), Net1.DrawColor
Next l

'Get point arrow head
ptx1 = Net1.PointX(-3)
pty1 = Net1.PointY(-3)
ptx2 = Net1.PointX(-4)
pty2 = Net1.PointY(-4)
ptx3 = ptx(nbpoint + 1)
pty3 = pty(nbpoint + 1)

'Draw arrow head
printer.Line (ptx1, pty1)-(ptx2, pty2), Net1.DrawColor
printer.Line (ptx1, pty1)-(ptx3, pty3), Net1.DrawColor
printer.Line (ptx3, pty3)-(ptx2, pty2), Net1.DrawColor

Type Property
Description
If current item is 0, writing this property has no effect and reading it returns

0.
If current item is not 0, sets or returns its associated integer data.
Not available at design time.
Usage
[form.]NET.Type[= setting]
Data Type
Integer
Remarks
Typically, this property allows the user to define node or link types. Like Data

property, the value of Type property is not used by the EasyNet control but
only stored. The meaning of this property depends on the application that
uses it.
See Also
Data Association

Data Property
Description
If current item is 0, writing this property has no effect and reading it returns

0.
If current item is not 0, sets or returns its associated long data.
Not available at design time.
Usage
[form.]NET.Data[= setting]
Data Type
Long
Remarks
Like Type property, the value of Data property is not used by the EasyNet

control but only stored. The meaning of this property depends on the
application that uses it.
See Also
Data Association

Text Property
Description
If current item is 0, writing this property has no effect and reading it returns

an empty string.
If current item is not 0 (node or link), sets or returns the text associated with

this item. The maximum length of an item text is 50 characters. The EasyNet
control maintains the memory for the strings associated to items.
Not available at design time.
Usage
[form.]NET.Text[= string expression]
Data Type
String
Remarks
The string is truncated if it is longer than the maximum number of bytes

allowed: 50.
See Also
Data Association

Picture Property
Description
If current item is 0, sets or returns the picture to be displayed in next

created nodes.
If current item is a node, sets or returns the picture to be displayed in this

node. This picture can be a bitmap or an icon.
If current item is a link, writing this property has no effect and reading it

returns 0.
Not available at design time.
Usage
[form.]NET.Picture[= picture]
Settings
The Picture Property settings are:
Setting Description
(none) (Default)
(bitmap, icon) Specifies a picture. You can also set this property using

the
LoadPicture function on a bitmap or an icon.

Data Type
Integer
See Also
Data Association

SelectMode Property
Description
Allow to enter in selection mode instead of drawing mode. This property has

no effect if MultiSel property is not set.
Not available at design time.
 The selection mode allows to select several items. You bring the mouse

cursor into the EasyNet control, press the left button, move the mouse and
release the left button. All nodes inside the selection rectangle are selected.
Then you can unselect some items by clicking them with the mouse and
simultaneously pressing the shift or control key. You can select them again by
using the same method.
Usage
[form.]NET.SelectMode[= {True | False}]
Settings
The SelectMode Property settings are:
Setting Description
False (Default) Drawing mode.
True Select mode is set.
Data Type
Integer (Boolean)

CanDrawNode Property
Description
Specify if you can create nodes interactively.
Usage
[form.]NET.CanDrawNode[= {True | False}]
Settings
The CanDrawNode Property settings are:
Setting Description
False Drawing nodes is not allowed.
True (Default) Drawing nodes is allowed.
Data Type
Integer (Boolean)
See Also
Capabilities

CanDrawLink Property
Description
Specify if you can create links interactively.
Usage
[form.]NET.CanDrawLink[=    {True | False}]
Settings
The CanDrawLink Property settings are:
Setting Description
False Drawing links is not allowed.
True (Default) Drawing links is allowed.
Data Type
Integer (Boolean)
See Also
Capabilities

CanMoveNode Property
Description
Specify if you can move (drag) nodes interactively.
Usage
[form.]NET.CanMoveNode[=    {True | False}]
Settings
The CanMoveNode Property settings are:
Setting Description
False Moving nodes is not allowed.
True (Default) Moving nodes is allowed.
Data Type
Integer (Boolean)
See Also
Capabilities

CanSizeNode Property
Description
Specify if you can resize nodes interactively.
Usage
[form.]NET.CanSizeNode[=    {True | False}]
Settings
The CanSizeNode Property settings are:
Setting Description
False Sizing nodes is not allowed.
True (Default) Sizing nodes is allowed.
Data Type
Integer (Boolean)
See Also
Capabilities

CanStretchLink Property
Description
Specify if you can "stretch" links (i.e add or remove segments)interactively
Usage
[form.]NET.CanStretchLink[=    {True | False}]
Settings
The CanStretchLink Property settings are:
Setting Description
False Stretching links is not allowed.
True (Default) Stretching links is allowed.
Data Type
Integer (Boolean)
See Also
Capabilities

CanMultiLink Property
Description
Specify if you can have several links between two nodes.
Usage
[form.]NET.CanMultiLink[= {True | False}]
Settings
The CanMultiLink Property settings are:
Setting Description
False (Default)    Multi links is not allowed.
True Multi links is allowed.
Data Type
Integer (Boolean)
See Also
Capabilities

MultiSel Property
Description
Specify that multiselection mode is possible or not.
Usage
[form.]NET.MultiSel[=    {True | False}]
Settings
The MultiSel Property settings are:
Setting Description
False Multi selection is not allowed.
True (Default) Multi selection is allowed.
Data Type
Integer (Boolean)
See Also
Capabilities

ReadOnly Property
Description
Set "read only" mode.
Usage
[form.]NET.ReadOnly[=    {True | False}]
Settings
The ReadOnly Property settings are:
Setting Description
False (Default) "Read only" mode is set.
True "Read only" mode is not set.
Data Type
Integer (Boolean)
See Also
Capabilities

ScrollBars Property
Description
Allows to add scrollbars for the EasyNet control. Read-only at run time.
Usage
[form.]NET.ScrollBars[= setting]
Settings
The ScrollBars Property settings are:
Setting Description
0 (Default) No scrollbar.
1 Horizontal scrollbar.
2 Vertical scrollbar.
3 Both Horizontal and Vertical scrollbars.
Data Type
Integer (Enumerated)
See Also
Capabilities

EditAction Property
Description
Specifies an action that applies to selected items or that allows to select or

unselect items.
Not available at design time; write only at run time.
Usage
[form.]NET.EditAction[= setting]
Settings
The EditAction property settings are:
Setting Description
0 create a node
1 create a link
2 delete selected nodes (and their links)
3 select all nodes.
4 unselect.
5 copy selected nodes onto the clipboard in a metafile

format.
6 clear network diagram (all items are deleted)
Data Type
Integer (enumerated)
Remarks
Link creation: The link that is created when setting EditAction to 1 is a link

that links the nodes specified by Org and Dst properties. If one of this node is
not valid, the link is not created.
Selection: Only nodes can be selected.by the user.
Delete: When a node is deleted, all its links are also deleted. A link cannot

exist without its origin and destination nodes. If one of these two nodes is
deleted, the link is also deleted.
See Also
Drawing

xScroll, yScroll Property
Description
Sets or returns the scroll values in twips.
Not available at design time.
Usage
[form.]NET.xScroll[= numeric expression]
[form.]NET.yScroll[= numeric expression]
Data Type
Long

PointedArea Property
Description
Returns the type of the area pointed by the mouse (sizing square, stretching

square, linking square, node, over no special area).
Not available at design time;    read only at run time
Usage
[form.]NET.PointedArea
Settings
ThePointedArea property settings are:
Setting Description
0 Size NW-SE square area
1 Size N-S square area
2 Size NE-SW square area
3 Size W-E square area
4 Stretching square area
5 Linking square area
6 Node area
7 No special area.
Data Type
Integer
Remarks
This property allows to change dynamically the mouse pointer BEFORE the

user clicks anywhere, to indicate what actions are possible.
 For example, when the pointer is over one of the corner points of a node, it

should change to the standard NE/SW or NW/SE diagonal arrow. When it is
over a side node, it would be the N/S or E/W arrow.

Change Event
Description
Occurs when a change is made. (For instance, an item is added, moved,

deleted or one of its properties is changed).
Syntax
Sub NET_Change ()

SelChange Event
Description
Occurs when selection is changed.
Syntax
Sub NET_SelChange ()

AddNode Event
Description
Occurs when a node is added.
Syntax
Sub NET_AddNode ()
Remarks
Typically, this event allows the user to change a property of the node just

after its creation and just before its display.
In fact when a node is created, three events are generated in the following

order:
SelChange
AddNode
Change

AddLink Event
Description
Occurs when a link is added.
Syntax
Sub NET_AddLink ()
Remarks
Typically, this event allows the user to change a property of the link just

after its creation and just before its display.
In fact when a link is created, three events are generated in the following

order:
SelChange
AddLink
Change

ErrSpace Event
Description
Occurs when no more memory is available.
Syntax
Sub NET_ErrSpace ()
Remarks
This event will never occur in the current version of EasyNet control. In fact,

this event will be used in next versions.

StartLink Event
Description
Occurs when the user clicks the little black square at the middle of a

selected node.
Syntax
Sub NET_StartLink ()
Remarks
This event is obsolete and will disappear in next versions. You would rather

use PointedArea property combined with mouse events.

StartStretch Event
Description
Occurs when the user clicks over a little black square of a selected link.
Syntax
Sub NET_StartStretch ()
Remarks
This event is obsolete and will disappear in next versions.You would rather

use PointedArea property combined with mouse events.

StartResize Event
Description
Occurs when the user clicks over one of the height little black squares

around a selected node.
Syntax
Sub NET_StartResize (direction As Integer)
Settings
The direction parameter settings are:
Setting Description
0 Size NW-SE
1 Size N-S
2 Size NE-SW
3 Size W-E
Remarks
This event is obsolete and will disappear in next versions.You would rather

use PointedArea property combined with mouse events.

StartMove Event
Description
Occurs when the user clicks over a node but not in one of the 9 black

handles.
Syntax
Sub NET_StartMove ()
Remarks
This event is obsolete and will disappear in next versions. You would rather

use PointedArea property combined with mouse events.

Registration
The demonstration version of the EasyNet control is fully functional but may

only be used in the development environment. If you generate an EXE file
with this version of the EasyNet control but without an EasyNet license file,
then any attempt to use this EXE file will display a dialog box explaining that
it has been generated without license file and the control will fail to load.

If you like EasyNet control then you can receive a full version by registering
as follows:

1) Either in the SWREG forum on Compuserve. The fee is $99 and the
Registration ID number is 2547.Then you will receive EasyNet by
Compuserve E-Mail and the registration fee will be billed to your
Compuserve Account.
2) Either by completing and sending the Order Form, along with a
check for FF 520 (French currency)    or    $105 (includes cost of
conversion) to:

Patrick Lassalle
2 , rue Gutenberg
92100, Boulogne

FRANCE
Then, you will receive the EasyNet control on diskette.

Registration benefits. In return for your registration you receive these
benefits:

- the latest version of the EasyNet control.
- full product support (via Compuserve) and free product upgrades for
a period of 12 months.
- a license file giving a royalty-free right to reproduce and distribute
the control file EasyNet.vbx with any application that you develop and
distribute.This license file is not for distribution.

License
The EasyNet control is not public domain or free software.
The EasyNet control is copyrighted, and all rights are reserved by its author:

Patrick Lassalle.
You are licensed to use this software on a restricted number of computers.

You may copy the software to facilitate your use of it on as many computers
as there are licensed users specified in the EasyNet.lic file. Making copies
for any other purpose violates international copyright laws.
You are not allowed to distribute easynet.lic file with any application that

you distribute.

Disclaimer: This software is sold AS IS without warranty of any kind, either
expressed or implied, including but not limited to the implied warranties of
merchantability and fitness for a particular purpose. The authors assume no
liability for any alleged or actual damages arising from the use of this
software. (Some states do not allow the exclusion of implied warranties, so
the exclusion may not apply to you.)

Your use of this product indicates that you have read and agreed to
these terms.

EasyNet Order Form    (Select "Print Topic" from the File menu to print this order).

Date of order:                  ______________

SHIPPING ADDRESS

Name __

Company __

Address __

__

__

__

Phone ________________        FAX ________________

PAYMENT ADRESS: Patrick Lassalle
2, rue Gutenberg
92100, Boulogne
FRANCE

Please send me:

EasyNet Custom Control Diskette:........$105    (or FF 520)    x ______

TOTAL ______

All payment must be by check in U.S. funds or French funds.   
The US price includes our cost of conversion.
Sorry, at this time we cannot accept    credit cards or "bill-me" orders.   
Please make the check payable to Patrick Lassalle.

Installation
Demonstration version:The files easynet.vbx and easynet.hlp should

be copied in your    WINDOWS\SYSTEM directory.

Registered version:The files easynet.vbx, easynet.hlp and easynet.lic
should be copied in your    WINDOWS\SYSTEM directory.

Distribution note:    When you create and distribute applications that use
the EasyNet control you should install the file easynet.vbx in the customer's
Microsoft Windows \SYSTEM subdirectory. The Visual Basic Setup Kit included
with the Professional VB product provides tools to help you write setup
programs that install you applications correctly.
You are not allowed to distribute easynet.lic file with any application that

you distribute.

